
An Approach to Chinese Number Recognition

 Jason Rupard
Department of Computer and

Information Science
College of Computing, Engineering,

and Construction
University of North Florida

jrupard@gmail.com

ABSTRACT
This paper describes an approach to the symbol recognition of
Chinese numerals. This approach uses techniques well
established in digital image processing, including black/white
conversion, digital binary morphology, pixel histograms for line
counting, Zhang-Suen thinning for skeletonization, and other
simple techniques such as median filtering. These techniques
are combined to form a feature extraction algorithm. Once
features are identified simple table lookups are preformed for
number recognition. The table is constructed from known
features in each of the non-complex and common Chinese
numerals. Finally, results and conclusions are provided in
regards to this algorithm along with ideas for future research.

Keywords
Image processing, symbol recognition, feature extraction,
connectivity, thinning, pixel histograms, Chinese numbers

1. INTRODUCTION
Symbol recognition is a well-known discipline of digital image
processing. From autonomous robots capturing images and
locating clues on which actions to proceed with, to scanning
programs processing documents and converting image text into
actual ASCII text, symbol recognition techniques exist in many
useful real world applications. This paper focuses on one
particular type of symbol recognition and one correlating
approach: the recognition of Chinese numbers [3,5]. This
approach will attempt to recognize printed as well as hand
written Chinese numerals. The recognition will be based on
simple Chinese numbers in a common font that most
newspapers use, rather than the complex numerals used on
checks, banknotes, and coins. The numerals 0 thru 10 are
shown in Figure 1.

Figure 1. Simple Chinese numbers 0 – 10

The algorithm used to recognize a numeral is based on what the
author calls feature extraction. Feature extraction is composed
of two feature types, point and line types. Feature point types
are defined to be endpoints, corner points, 3-way intersections,
and 4-way intersections within a numeral. Feature line types are
defined as vertical and horizontal lines that make up the number.
Once these features are identified, a simple table lookup is
preformed. The table is constructed from the known features
that exist in each Chinese numeral.

The feature extraction algorithm consists of three overall
phases; pre-processing, feature extraction, and post-processing.
The pre-processing phase is used to set the image for feature
extraction through the use of two techniques: simple black/white
conversion and binary morphology. The feature extraction
phase uses a line scanning technique for discovering feature
lines, Zhang-Suen thinning, and finally connectivity calculations
for feature point discovery. The post-processing phase includes
orientation, point reconciliations, and feature matching via table
lookup. The rest of this paper will describe these techniques in
detail with results and conclusions provided afterwards.

2. Feature Extraction Algorithm
For simplicity’s sake, the feature extraction process in this paper
will focus on one Chinese numeral in an image at a time. The
image should come into system in gray-scale form. Each pixel
in a gray-scale image is represented as a byte of data and
therefore can be a gray value between 0 and 28-1. A black pixel
will have value 0 and a white pixel will hold value 255. Every
other value represents a gray shade between white and black [1].
The algorithm expects the numeral to be black, foreground
color, and the background color to be white.

2.1 Pre-processing

2.1.1 Black/White Conversion
The first step of pre-processing is to take the gray-scale image
and convert it to a black and white, binary image. A binary
image pixel has only two values, 0 for black and 1 for white. To
convert gray-scale to black and white a simple threshold
technique is used; a pixel value greater-than the threshold value
becomes white, a value less-than becomes black [1]. This
technique is used to remove artifacts sometimes introduced by
the scanning process. Also, a binary image is required for the
remainder processes.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2005 CCEC Symposium, April 13, 2005, Jacksonville, Florida, USA.

2.1.2 Binary Morphology
The second and last step in the pre-processing phase is a binary
morphology called closing. This process is used for filling tiny
holes within the numeral that can be introduced when the
number is hand written. It is important that a solid numeral is
used in later processes, otherwise they may fail. The closing
operation is a combination of two binary morphologic
operations called dilation and erosion, in that order.

Both the dilation and erosion operators take two inputs: the
image and a 3x3 structuring element of pixels, shown in Figure
2. A 3x3 structuring element is a matrix with the center as an
anchor point. Both operations use the structuring element by
superimposing it over a pixel in the image where the anchor
point of the 3x3 is imposed directly over the pixel in question.
The dilation operation superimposes the structuring element
over every background pixel, or pixel with value 1 (white). If at
least one pixel in the structuring element coincides with a
foreground pixel with value 0 (black) in the image underneath,
then the current pixel is set to the foreground value. The
erosion operation uses the same structuring element on each of
the foreground pixels. If for every pixel in the structuring
element, the corresponding pixel in the image underneath is a
foreground pixel, then the current pixel is left alone, otherwise it
is set as a background pixel [6,7]. It is important to understand
that when the value of a pixel is changed in either operation, the
change must be recorded and then carried out after the operation
is completed, or the change must be altered on a temporary
image which is later returned by the operation. Otherwise a
rippling effect of incorrect values will occur from the
operations.

Figure 2. 3x3 Structuring Element

To close larger holes in the numeral, a sequence of N dilation
followed by N erosions can be used. As N increases, the size of
the hole that can be filled increases. The effects of closing are
shown in Figure 3. The image is now ready for the feature
extraction phase.

Figure 3. Closure operations before and after

2.2 Feature Extraction

2.2.1 Line Scanning
The line scanning process returns the number of vertical and
horizontal lines that make up the numeral. These two numbers
are recorded as the feature lines of the numeral and are used to
determine the final output. Since the process of determining the
number of vertical and horizontal lines is the same, except for
switching the dimensions that are being scanned, we will focus
on finding just the number of horizontal lines.

The first step is to construct a horizontal foreground pixel
histogram [1], shown in Figure 4. In this case, the histogram
plots the frequency of black pixels in a row of the image. Next,
the histogram is smoothed out by keeping only the major peaks
and valleys. This is accomplished by running a 5x5 median
filter over the histograms image [1,8]. Also, closing is used to
eliminate very small sub-valleys within larger valleys. Finally,
the histogram is ready for line scanning.

Figure 4. Numeral seven with its horizontal pixel histogram

Starting off at the top of the histogram’s image, scanning across
the pixel frequencies counts the number of black/white or
white/black changes. This scanning continues down the
histogram recording the number of changes at each increment.
As soon as the current number of changes on the scanned line is
less than the previous line, the scanning stops. The number of
horizontal lines in the numeral is equal to the number of changes
in the previous scanned line divided by 2. Figure 4 shows the
end location of the scanning line. In this figure, the “top” of the
histogram is the right side and the “bottom” is the left side.
Therefore, this scanning process would be from right to left.
Note that the horizontal pixel frequencies could have been
plotted along the x-axis of the histogram in Figure 4. Plotting
along the y-axis was chosen for visual affect.

2.2.2 Zhang-Suen Thinning
Thinning is a process for producing the “skeleton” of an object
in an image. The proceeding steps of the feature extraction
algorithm work with the skeleton form of the Chinese numeral.
Figure 5 shows the numeral five and its skeleton or thinned
version. Many thinning algorithms exist. For this approach,
Zhang-Suen was chosen because of its simplicity and speed [9].

Figure 5. Numeral five and its skeleton

Thinning is the process of stripping away outer pixels until no
further pixels can be stripped without losing the overall shape of
the object. Before explaining the Zhang-Suen algorithm we

must define a couple of parameters—a 3x3 neighborhood and its
connectivity. The 3x3 neighborhood of an image pixel (I(i,j))
consists of its eight adjacent pixels. Figure 6 shows the 3x3
neighborhood of I(i,j), where I(i,j) is P1. Connectivity of a
neighborhood is defined as the number of object parts in that
neighborhood. If connectivity is 1, then the removal of the
center pixel in the neighborhood will not affect the overall
structure of the object. If connectivity is 2, then the removal of
the center pixel will spilt the object into 2 separate parts, and so
on for 3, 4, etc. To find the connectivity of a 3x3 neighborhood,
visit pixels P2, P3 ,..., P8, P9, P2 counting the number of white-to-
black changes. The number of changes is the connectivity.

Figure 6. 3x3 pixel neighborhood of I(i,j)

The Zhang-Suen algorithm iterates over the image pixels until
no more pixels can be removed. Each iteration is broken up into
two sub-iterations, as follows:

First sub-iteration:
Pixel I(i,j) is marked for deletion if ALL of the following 4
conditions are true

1. Connectivity = 1
2. Has at least 2 object neighbors and not more than 6
3. At least one of P2, P4, P6 is a background pixel
4. At least one of P4, P6, P8 is a background pixel

Delete marked after iteration completed

Second sub-iteration:
Same as the first except rules 3 and 4 have been changed

3. At least one of P2, P4, P8 is a background pixel
4. At least one of P2, P6, P8 is a background pixel

Delete marked after iteration completed

If at the end of any sub-iteration there are no pixels to be
deleted, the skeleton is complete [9].

To finalize the skeleton, one last step is taken called staircase
removal. The skeleton produced by the Zhang-Suen algorithm
is one pixel thick in most areas, but not in all [7]. However,
later in the process, the feature point detection algorithm
requires a skeleton one pixel thick throughout. Holt’s staircase
removal fulfills this requirement by removing the extra pixels
[4]. Figure 7 shows an example of a staircase condition. One of
the two pixels in the middle row can be removed without
affecting the connectivity of the object.

Figure 7. Staircase condition

To accomplish the removal, each foreground pixel’s 3x3
neighborhood is compared to four structuring elements that are
shown in Figure 8. X’s represent “don’t care” conditions, where
the background/foreground value does not matter. If the current
object pixel neighborhood matches one of the structuring
elements and one of the X side neighbors is a background pixel,
then the pixel stays. Otherwise, the pixel is marked for deletion.
A side neighbor is one of the following, P2, P4, P6, or P8
referring to Figure 6. At the end of the iteration, pixels marked
for deletion are set to background pixel values.

Figure 8. Four structuring elements for staircase removal

2.2.3 Feature Point Detection
For the final step in the feature extraction phase, feature points
will be recorded for table lookup. The feature point detection
function takes the skeleton of the numeral as input. Since the
skeleton is only one pixel thick throughout we can use the
connectivity function to identify endpoints, 3-way intersections
and 4-way intersections. Corner points cannot be identified by
connectivity. The process of identification tests each skeleton
pixel. If the connectivity of the pixel is one, then an endpoint is
recorded. If the connectivity is three, then a 3-way intersection
is recorded. If the connectivity is four, then a 4-way
intersection is recorded. When a pixel is recorded as one of
these three types, the xy location of that pixel in the image is
saved. This xy location is used later in the post-processing
phase to reconcile points in very close in proximity of each
other.

Notice, corner points were left out of the detection since a
connectivity of two does not give any information on shape. A
pixel with connectivity of 2 could be on a straight line, sharp
corner, or even a gradual curve. Corner point detection should
be the subject of further research.

2.3 Post-processing

2.3.1 Feature Scaling
Since a numeral can be hand written in different sizes, the 2D
scaling transformation of all feature points to an arbitrary
constant size is used to maintain uniformity [2]. To accomplish
this, a bounding box is constructed around the Chinese number.
The bounding box is defined as two xy points—the upper-left
and lower-right corners. These points are assigned so that the
box is, at most, encompassing the numeral. Next, the bounding

box is scaled, along with all the set points inside of it, to some
constant size that all numeral boxes will be scaled to. Smaller
numerals drawn are scaled up and larger numerals are scaled
down to this constant sized box.

2.3.2 Feature Point Reconciliation
The last phase corrects minor errors introduced by some of the
previous processes. These errors can range from artifacts
introduced by the thinning of thick ends points (Figure 9a) or
corners (Figure 9b) to the separating of 4-way intersection into
two 3-way intersections (Figure 9c). Other errors, caused
during handwriting of the numerals, are also corrected when this
method tries to connect very close endpoints that were meant to
be connected together (Figure 9d).

9a

9b

9c

9d

Figure 9. Possible errors introduced by the feature
extraction algorithm

Each of these corrections uses a function that measures the
distance between two or more xy feature points on the image.
The problem suggested in Figure 9a is corrected by combining
two or more endpoints that are a distance d1 away from one 3-
way intersection, into one single endpoint. The 3-way
intersection is also removed. Figure 9b is corrected by
removing an endpoint that is a distance d2 away from one 3-way
intersection. The 3-way intersection is removed also. A corner
point would be recorded in place of these points. Correcting
Figure 9c is accomplished by combining two 3-way
intersections that are distance d3 away from each other into one
4-way intersection. Figure 9d is corrected by deleting the two
endpoints if the endpoints are a distance d4 away from each
other and a shortest path does not exists between them.
Distances d1, d2, d3, and d4 are chosen by the programmer
arbitrarily. To improve proper distance calculations, a method
should be discovered that bases the distances on the scale and
the thickness of the numeral.

2.3.3 Table Lookup
Table lookup is the final step in the Chinese numeral
recognition algorithm. The table is constructed from simple
Chinese numbers found in Figure 1. The feature points and
lines that make up these numerals are entered into the table. For
example, the entry of Chinese numeral 5 would have four
endpoints, four 3-way intersections, zero 4-way intersections,
three horizontal lines, and two vertical lines. Feature points are
the primary lookup, while feature lines are secondary. In other
words, if a perfect match is made on feature points, the
matching is complete. Otherwise, if multiple matches are found
for feature points, feature lines are compared. If the numeral is
sill ambiguous after the secondary lookup, the set of possible
matches is returned.

3. Results and Conclusions
Based on experimentation, this approach provides reliable,
albeit not perfect matches. As one can see from the figures in
Appendix A, size and location of the numeral in the image do
not matter for either of the table lookups, but rotation does
matter for the secondary lookup of feature lines. The detection
algorithm does not account for rotated numerals within the
image. Also, some numbers end up being ambiguous with just
the feature point and line information recorded. Specifically
seven, nine, and ten are similar if drawn correctly.

Six sets of hand drawn numerals were used for experimentation,
66 total numerals. The figures found in Appendix A are
examples taken from the sets. Each set was drawn differently,
but all were based on the numbers in Figure 1. The algorithm
found an exact match for 54 of the 66 numbers. If more then
one possible match is found the algorithm will return the
possible set. Out of the twelve numerals not having an exact
match, eight of them had correct possible sets. Only 4 of the 66
numerals were found to have an unknown or incorrect match.
This algorithm’s runtime is bounded by a polynomial function.
The average runtime for the set of 66 numerals was 68.4ms with
a standard deviation of 36.4ms. The test machine is a P4
2.4GHz with 1GB of memory.

Further research to improve this algorithm should focus first on
corner point data which could provide perfect matching for all
numerals. Other techniques to improve this approach might
consider the location of a feature point relative to other points in
the numeral. Overall this approach presents a solid building
block for better Chinese number recognition in future research.

4. ACKNOWLEDGEMENTS
This approach was designed for the final project in Dr. Yap
Siong Chua’s graduate image processing course. A special
thanks to him and Regeana Gibson for their support.

5. REFERENCES
[1] BOVIK, Al. 2000. Handbook of Image and Video

Processing. Academic Press.

[2] HEARN, D., AND BAKER, M.P. 1997. Computer
Graphics, C version. Prentice Hall, Upper Saddle River,
NJ.

[3] HILDEBRANDT, THOMAS H., AND LIU, WENTAI.
1993. Optical recognition of handwritten Chinese
characters: Advances since 1980. Pattern Recognition.
Volume 26. 2:205-225.

[4] HOLT, C.M., STEWART, A., CLINT, M. AND
PERROTT, R.H. 1987. An Improved Parallel Thinning
Algorithm. Communications of the ACM. Vol. 30. 2:156-
160.

[5] LEUNG, C.H., AND SZE, L. 1997. Feature selection in the
recognition of handwritten Chinese characters.
Engineering Applications of Artificial Intelligence. Vol. 10.
5:495-502.

[6] Morphology – Closing. 1994.
http://www.cee.hw.ac.uk/hipr/html/close.html

[7] PARKER, J.R. 1996. Algorithms for Image Processing and
Computer Vision. John Wiley & Sons, New York, NY.

[8] Spatial Filters – Median Filter. 1994.
http://www.cee.hw.ac.uk/hipr/html/median.html

[9] ZHANG, T.Y., AND SUEN, C.Y. 1984. A Fast Parallel
Algorithm for Thinning Digital Patterns. Communications
of the ACM. Vol. 27. 3:236-239.

APPENDIX A
Various image numerals and their results:

Figure 10. Result - primary match 0

Figure 11. Result – primary match 1

Figure 12. Result – secondary match 2

Figure 13. Result – primary match 4

Figure 14. Result – no match

Figure 15. Result – primary match 5

Figure 16. Result – primary match 5

Figure 17. Result – secondary match 7

Figure 18. Result – possible 7, 9, or 10

Figure 19. Result – secondary match 9

Figure 20. Result – possible 7, 9, or 10

	INTRODUCTION
	Feature Extraction Algorithm
	Pre-processing
	Black/White Conversion
	Binary Morphology

	Feature Extraction
	Line Scanning
	Zhang-Suen Thinning
	Feature Point Detection

	Post-processing
	Feature Scaling
	Feature Point Reconciliation
	Table Lookup

	Results and Conclusions
	ACKNOWLEDGEMENTS
	REFERENCES

